
5. Relation between flow and mass fields

This section is an introduction to the dynamics oflarge-scalemotions in the extra-tropical
atmosphere and ocean. Important simplifications are possible on large space and time scales.

The main goal is to make potential vorticity (PV) a useful dynamical tool. The ordinary
vertical vorticity fully determines the rotational motion in the horizontal plane, but it is not con-
served.

In order to determine the flow from the distribution of PV, which is conserved, one needs a
second relationship between “motion” and “mass”. The various choices, called “balance approxi-
mations”, eliminate gravity-inertia waves as a side-effect. The horizontal divergence involved in
gravity waves becomes a “slave” to the geostrophically balanced motion.

5.1 Scale analysis

For simplicity, we proceed from theshallow-water system:

(5.1)

(5.2)

. (5.3)

Hereh refers to the displacement of the free surface from its resting levelH. In this system,
“mass” refers directly to . The Coriolis effect is included.

Consider “long waves” in the mid-latitude troposphere, with global wavenumber less than
10 (wavenumbers 1, 2 or 3 are “ultra-long waves”). We will look for the leading-order behavior of
disturbances with this scale, using some additional estimates:

L --- horizontal length scale 106 m

H ---depth scale 104 m

V --- wind speed 10 m/s

c --- phase speed 10 m/s

 --- angular frequency of earth 10-4 s-1

 --- gravitational constant 10 m/s2

a --- radius of earth 107 m
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The first four scales are appropriate for the extratropical atmosphere. For the ocean, the horizontal
length scale is an order of magnitude smaller, while the velocity scales are usually two orders of
magnitude smaller.

We normalize coordinates and dependent variables as: ,etc., where  is the non-
dimensional variable. The time scale is a derived parameter, . Thex-momentum equa-
tion 5.1 becomes

, (5.4)

where  has been introduced as the scale forh.

Now divide 5.4 by  to reach

. (5.5)

Here Ro = , the “Rossby number”, and . From the dimensional esti-
mates,  (even smaller for the ocean away from boundary currents). Therefore, the last
two terms in 5.5 are in approximate balance and we should set by making .
This says that, at the scales of interest,most of the pressure gradient is not involved in changing
the velocity.

Taylor-expanding the Coriolis parameter produces , where
and and are the latitude andy-position at which . The expansion

can be justified only if . Substituting dimensional estimates for the atmosphere -- or oceanic
boundary currents and eddies -- we get . To proceed formally, we expand all the vari-
ables in the manner of

(5.6)

and group together terms in each equation according to their power of Ro. With a little luck, this
will yield a set of simplified forecast equations with nice properties such as an energy principle.

5.2 The geostrophic wind

If B is of the same order as Ro, the lowest-order terms (those withno factor of Ro) in 5.5
are

. (5.7)

u V ũ= ũ
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The corresponding result from they-momentum equation is

. (5.8)

The system at this order is purely diagnostic. The lowest-order horizontal velocity in 5.7-5.8 can
be expressed as , or with dimensions restored,

. (5.9)

The subscript “g” is introduced for “geostrophic”. This is actually an approximation of the geo-
strophic velocity based on (otherwise the Coriolis parameter is not constant). In this model,

 is non-divergent, with streamfunction . The geostrophic vorticity can be
expressed as  using the 2-D Laplacian, or .

The non-dimensional form of 5.3, using , is

. (5.10)

Since  on the rhs is at most O(Ro) but  is order-unity, we conclude that  is at most of
order Ro. The standard scaling forw is based on mass continuity, , rather
than the kinematic free-surface condition, . Thus,  is standard. With
this choice, the vanishing of the horizontal divergence at lowest order then means that

(5.11)

and .

In spherical coordinates, the lowest-order velocity is

, (5.12)

which, of course, is still non-divergent.

5.3 Quasi-geostrophic shallow-water model

For a time-dependent system, now consider the first-order (one factor of Ro) terms in the
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momentum equation:

, (5.13)

where  and . After eliminating  by cross-differentiating
components, we have

. (5.14)

Here we have also introduced the first-order terms of mass continuity: . Mass con-
tinuity also allows us to write the leading-order part of 5.10 as

, (5.15)

with , the “Richardson number”. Since  and  each have a known diagnostic
relationship to , 5.14 and 5.15 form a closed, time-dependent system for and . This is the
so-called “quasi-geostrophic” system.

Eliminating  in 5.14-5.15 yields the quasi-geostrophic, shallow-water form of Ertel’s
potential vorticity equation:

, (5.16)

where . This statement expresses conservation, following the geostrophic motion,
of the quasi-geostrophic potential vorticity, , where , the
linearly varying planetary vorticity. The dimensional form of , in units of vorticity, is

, (5.17)

where . The conservation statement 5.16 may be written

, (5.18)

with and . Since 5.18 involves a single unknown,
, the goal of finding a closed dynamical system involving PV has been achieved. A system in

which  can be obtained from  alone, as in 5.17, is said to possess an “invertibility principle”.

From 5.16, the ratio of the “mass” perturbation to the relative vorticity is of the order of
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in the expression for potential vorticity. This is also the ratio between available potential energy
and kinetic energy in a balanced model. The nondimensional parameter , called the “Burger
number”, may be written by defining , the so-called Rossbyradius of
deformation. We infer from 5.16 that when the disturbance is small compared to the radius of
deformation, it is mainly a velocity perturbation, and absolute vorticity is approximately con-
served. When the disturbance scales are large compared to the Rossby radius, the height field is
nearly conserved or else balanced mainly by changes inplanetary vorticity.

As long as the divergence is O(Ro), the large-scale “limit” is still subject to the condition
. However, another balanced (i.e., nearly geostrophic) system is possible for extremely

large-scale disturbances if the divergence appears at a lower order,i.e., in the geostrophic velocity.
PV conservation in this system is suggested by removing the relative vorticity from (5.16). How-
ever, when divergence is O(1), we don’t expect mass continuity or the expression for PV to “lin-
earize”, because then . The form of that arises in this situation is mentioned at the end of
the section.

Eliminating  from 5.14 and 5.15 is not very productive, but eliminating  yields a
useful diagnostic equation:

. (5.19)

On larger scales than the deformation radius ( ), the response to vorticity advection is vortex
stretching (first term on rhs of 5.14). In this limit, our scaling keeps  order-unity even though

. On smaller scales than , the  vertical motion keeps the height in geostro-
phic balance without significantly stretching the planetary vorticity.

Another type of balanced flow occurs in the presence of external forcing when . This
assumption implies  and since the external deformaiton radius  is at least as large as ,
we have , as well. If the forcing consists of a wind stress, , as in
an ocean basin, then 5.16 becomes

, (5.20)

where the rhs is the curl of the wind-stress vector. This relation is known asSverdrup balance. In
regions where surface westerlies increase towards the north,i.e., , 5.20
predicts a steady southward drift in the basin. In both hemispheres, Sverdrup drift is equatorward
if the surface wind is westerly. Mass is conserved by means of a viscous boundary current along
the western side of the basin.

In a more realistic model with vertical structure,  affects the deep ocean indirectly
through a vertical motion imposed at the interface between the inviscid deep layer and the
viscous surface layer. Thus, we keep , but since  is now based on theinternal deforma-
tion radius, we can have  large enough for . Then since  is order-unity,
mass continuity remains nonlinear: . Moreover, the horizontal divergenceD
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is primarily associated withplanetary vortex stretching by thegeostrophic flow:
, where  (the velocity is divergent at lowest order). We now

have . This may be rewritten as a statement of conservation, following
the geostrophic motion, of the quantity

. (5.21)

Evidently,  is the PV for this system, the so-called “planetary geostrophic” model (shallow-
water version). As in the quasi-geostrophic large-scale “limit”, there is no contribution from the
relative vorticity. Since the geostrophic velocity is not expressible in terms of a streamfunction,
the invertibility principle must be written  or .

The second inequality used to obtain 5.20 is a “rigid-lid” approximation. It does not exclude the possibility of hori-
zontal pressure gradents at the top, “under the lid”. To be consistent with mass continuity, the column-integrated geo-
strophic divergence under a rigid lid must be cancelled by the ageostrophic divergence. Most of the ageostrophic
divergence is confined to the viscous surface layer (see section 5.5). However, because the geostrophic flow diverges
on the scale of the earth’s radius rather than the forcing scale, the full-column geostrophic mass transport tends to
dominate the ageostrophic mass transport (see problem 5.4).

5.4 Thermal wind and baroclinicity vector

In pressure coordinates, the geostrophic wind is

, (5.22)

with  (cf. 5.9, in which ). We postpone the development of PV dynamics for this
model to the end of the chapter. For two pressure levels, , define thethermal wind:

(5.23)

The difference  is called thethickness. For an ideal gas, the hydrostatic relation gives
, so that

. (5.24)
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The “thickness” is a streamfunction for the geostrophic vertical shear vector, . In the
northern hemisphere, the thermal wind is directed with cold on the left and warm on the right. In
the diagram below,T represents the log-p average in the layer where  is defined. In this case,

 is becoming more westerly and less southerly with height.

The baroclinicity vector can be expressed in terms of the geostrophic wind and the thermal
wind as follows.

Horizontal component of the baroclinicity vector:

(5.25)

(Subscript “h” refers to horizontal derivatives at constantz.) The rhs represents forcing of circula-
tion about a horizontal axis. If velocity is entirely geostrophic, new circulation all goes into the
planetary part of  (material circuits are being tilted relative to the equatorial plane by the
shear). This allows the flow to be steady.

Vertical component of the baroclinicity vector:

(5.26)

Here we have used the hydrostatic relation to introduce . Simplest cases:

(1) Barotropic: . Then  and .

(2) Equivalent barotropic:  parallel to . Then .

In the diagram below, we assume . The circulation tendency (non-Boussinesq) is cyclonic,
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that is, .

5.5 Ekman layers

The lowest-order system has no predictive value, but we can use it to analyze balanced
flows. We will consider a balance involving the Coriolis force, pressure-gradient force and verti-
cal momentum diffusion -- called Ekman balance.

We first need to summarizemixing-length theory: The velocity has variability down to a
minimumm “resolved” time scale. Shorter-time-scale motions (“turbulent eddies”) produce
momentum forcing,F, via unresolved momentum fluxes or “Reynolds stresses”. For example, in
thex-equation,

, (5.27)

where the prime refers to the short-time-scale fluctuations and the overbar means time averaging.

Most of the turbulent eddy flux convergence near a horizontal boundary is in the vertical:

. (5.28)

We estimate the anomaly  by assuming momentum transport over a typical vertical displace-
ment ; we estimate  by assuming unit aspect ratio for the turbulent eddies. Thus,

(5.29)
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, (5.30)

where , a scalar quantity which should depend only on distance to the surface.

Now we have the Ekman-layer equations foru andv:

. (5.31)

. (5.32)

These are written inz-coordinates and with the “turbulent eddy diffusion” included as forcing.
There is still no predictive content.

To get a solution, assume that nothing butu andv varies withz in the Ekman layer. In the
case whereV vanishes at the surface (“no slip” at ), the solution is

(5.33)
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angle . The upward-decaying solution is chosen so that  matches on to  at .
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The deviation  has a cross-isobaric component (the ageostrophic “Ekman drift”) that is
mainly to the left of : friction weakens the rotational constraint and allows the pressure gradi-
ent to do some work (against the friction).

The total ageostrophic mass-flux is

(5.34)

Hence, from an integral of the mass continuity equation, the vertical mass flux out of the Ekman
layer is

, (5.35)

since is non-divergent. This is used as alower boundary condition for the frictionless flow far
above the boundary.

5.6 Thermodynamic scaling for the atmosphere

Next we begin developing the PV dynamics for a hydrostatic,continuously stratified
atmosphere. Scaling the continuity equation in pressure coordinates, we get

, (5.36)

whereW is the scale for . The variables are non-dimensional and no bigger than order-unity.
Consequently, we should use . However, as in the shallow-water model, the non-
divergence of the geostrophic velocity will make the resulting  of order Ro.

Since we have from hydrostatic balance, conservation of entropy should be
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, (5.37)
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, (5.38)

where  is the material derivativeexcludingvertical advection. Recall that
.

We use hydrostatic balance to scale the specific volume:  for the horizontal
variations of  and  for the horizontally-averaged . Note that ,
where is the scale for the vertical displacements. Also let be a typical value of .
Then 5.38 becomes

, (5.39)

with . The variables are non-dimensional [ ; ] and
the new non-dimensional parameter is

, (5.40)

the Richardson number.

Over the troposphere,  varies by about 10%. Hence  and
. Since is of order Ro, the terms on the lhs of 5.39 are of the same order. The

first-order equation is

, (5.41)

where  is the horizontal average of . Departures from the horizontal average are
neglected in the vertical advection because geostrophy keeps the vertical displacements of order
Ro compared to and therefore . As in the shallow-water model, the time deriv-
ative uses only the lowest-order (geostrophic) velocity: , where

The result in 5.41 demonstrates that the vertical thermodynamic structure of the extratrop-
ical troposphere is not controlled entirely by diabatic forcing and small-scale processes (e.g., con-
vection), but by a combination of such effects and internal large-scale dynamics. Without the
diabatic forcing, 5.41 is analogous to 5.15.

5.7 Quasi-geostrophic baroclinic model in isobaric coordinates

The first-order (one factor of Ro) terms in the momentum equation are:

, (5.42)
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where . Eliminate  by cross-differentiating components:

. (5.43)

Since  and  have a known relationship to , 5.43 together with 5.41 and the hydrostatic
relation, , forms a closed, time-dependent system for  and . This is the quasi-
geostrophic system for a continuously stratified fluid.

The dimensional form of the quasi-geostrophic system (5.43 and 5.41), without forcing:

. (5.44)

. (5.45)

Recall that  is the deviation from a horizontally averaged state, , and that
, the mean “static stability” of the atmosphere.

(1) Eliminating  yields a version of Ertel’s potential vorticity equation:

. (5.46)

This expresses conservation, following the geostrophic motion, of the “pseudo-potential vorti-
city”,

. (5.47)

This quantity is subtly different from the “potential vorticity” in that the static stabilityS is differ-
entiated. Otherwise, there would be linearizedvertical advection in 5.46. Using 5.46-5.47 makes
the vertical velocity technically extraneous in a quasi-geostrophic forecast. Like 5.16, the result
5.46 involves a single unknown, implying a closed dynamical system.

(2) Eliminating  yields the diagnostic equation:

. (5.48)

This is analogous to 5.20 and is known as theomega equation.
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ζ̃0 Ṽ0 φ̃0
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Problems

5.1  Show that in a hydrostastic, Boussinesq, planetary-geostrophic model, the potential
vorticity is , analogous to 5.21. What is the invertibility principle in this model?

5.2  A certain quasi-geostrophic shallow-water flow on anf-plane has
 at time , where ,  and  are constants.

a) Obtain the height field as a function of time by substituting  for the phase. How does
the phase speed  behave in the limits  and .

b) In the same two limits, describe the particle trajectories, including the vertical displacements at
the free surface.

5.3 Consider a 2-layer ocean in a rotating frame with , . The density
of the upper layer is uniform and smaller than that of the lower layer . The surface of the ocean
is always flat, and the interface between the layers is flatinitially. Both layers have an initial depth
H.

a) The upper layer is adjusted to a steady wind stress such that . Find the verti-
cal profile ofu andv in this layer ( ) subject to the Ekman equations:

TakeK to be constant and assume that the total velocity decays away from the surface.

b) Let . Using mass continuity, deduce the vertical velocity at the interface.
Assume thatH is much greater than the depth of the Ekman layer. Use this value to obtain the
height perturbation  of the interface as a function of time and latitude.

c) Assuming that the lower layer is not directly subject to frictional forcing, write down they-
momentum equation for the lower layer in terms of the height gradient . Assume hydro-
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static balance.

d) Assuming that geostrophic adjustment is fast compared to adjustments in , obtain the zonal
velocity in the lower layer as a function of time. As a function of the meridional scale of the
forcing, how long does it take for this lower-layer flow to become as strong as ?

5.4  Consider a homogeneous ocean over a flat bottom forced by a purely zonal wind
stress . Make the rigid-lid approximation,  at .

a) Show that the Ekman “pumping” is

,

where  and  is the depth where the zonal stress, , vanishes.

b) Show that this pumping is dynamically consistent with the residual flow in the inviscid interior
( ) given by

,

where , the Sverdrup mass flux, and , the Ekman mass flux.

c) Finally, show that the geostrophic mass flux, , far exceeds the ageostrophic mass flux if the
earth’s radius  far exceeds the scale  of the forcing.

5.5  A perturbation in the geopotential field on a -plane ( ) is given as

, ,

where  and V are constants and  is a horizontal wavenumber vector (total wavenumber
).
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a) Assume that the static stability, , is constant. Find an expression forK in the

case where the pseudo-potential vorticity equals at mid-depth, . What is

 specifically when , assuming  and  in
m.k.s. units? Use  and .

b) In the absence of any other flow, how will this disturbance evolve, according to the quasi-geo-
strophic model?

c) From the “omega equation”, determine the quasi-geostrophic divergent circulation, assuming
 at both  and . In what parts of the disturbance would you most expect

precipitation to occur?

d) Using the answers to (b) and (c), determine how the amplitude of vertical particle displace-
ments depends on . Hint: (b) provides a time scale and (c) provides a velocity scale.

S α–
d θlog

dp
--------------=

f 0 βy+ p 1
2
-- p1 p0+( )=

L K
1–≡ S 0.1α0 ∆p⁄= ∆p p0 p1– 10

5
= = α0 1=

f 0 10
4–

= s
1–

V 10ms
1–

=

ω 0= p p0= p p1=

β


